Composite Support Vector Machines with Extended Discriminative Features for Accurate Face Detection

نویسندگان

  • Tae-Kyun Kim
  • Josef Kittler
چکیده

This paper describes a pattern classifier for detecting frontal-view faces via learning a decision boundary. The proposed classifier consists of two major parts for improving classification accuracy: the implicit modeling of both the face and the near-face classes resulting in an extended discriminative feature set, and the subsequent composite Support Vector Machines (SVMs) for speeding up the classification. For the extended discriminative feature set, Principal Component Analysis (PCA) or Independent Component Analysis (ICA) is performed for the face and nearface classes separately. The projections and distances to the two different subspaces are complementary, which significantly enhances classification accuracy of SVM. Multiple nonlinear SVMs are trained for the local facial feature spaces considering the general multi-modal characteristic of the face space. Each component SVM has a simpler boundary than that of a single SVM for the whole face space. The most appropriate component SVM is selected by a gating mechanism based on clustering. The classification by utilizing one of the multiple SVMs guarantees good generalization performance and speeds up face detection. The proposed classifier is finally implemented to work in real-time by cascading a boosting based face detector. key words: pattern classification, face detection, support vector machine, independent component analysis, principal component analysis, Adaboost

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

A fast method for training support vector machines with a very large set of linear features

Current systems for object detection often use support vector machines (SVMs) as the basic classification algorithm. A rather common case is to compute a small set of linear features and then train the classifier on these features. We present a fast method to train and evaluate SVMs with many linear features and show results for face detection using a set of 210,400 features. The resulting clas...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

Combining support vector machines for accurate face detection

The paper proposes the application of majority voting on the output of several support vector machines in order to select the most suitable learning machine for frontal face detection. The first experimental results indicate a significant reduction of the rate of false positive patterns.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 88-D  شماره 

صفحات  -

تاریخ انتشار 2005